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The long time tails of the correlation functions that determine the self-diffusion 
coefficient and the kinetic parts of the shear viscosity and heat conductivity in a 
one-component plasma are calculated using a systematic kinetic theory. The 
results are in agreement with those obtained from the phenomenological mode 
coupling theory. The formal kinetic theory calculations of previous workers, 
who obtained incomplete long time tail results, are also discussed. 
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1. I N T R O D U C T I O N  

In the pas t  decade  there has been cons iderab le  interest  in the t ime depen-  
dence of the velocity cor re la t ion  funct ions tha t  de te rmine  the t r a n s p o r t  
coefficients in a dense e lect ron gas or  o n e - c o m p o n e n t  p l a sma  (OCP) .  These 
t ime cor re la t ion  functions have been the object  of bo th  extensive 
theoret ica l  work  (~ 3~ and  c o m p u t e r  s imulat ions .  ~4'5) A large par t  of the 
theoret ica l  work  has been based  on formal  kinet ic  theories  tha t  are in 
general  not  systematic.  (1'21 Nevertheless ,  these theories  have been successful 
in fitt ing the results of  c o m p u t e r  exper iments  even in very dense systems, f6) 
Their  p red ic t ion  for the a sympto t i c  long- t ime behav ior  of the t ime 
cor re la t ion  funct ions for the t r anspo r t  coefficients differs, however ,  f rom 
that  of  a phenomeno log ica l  h y d r o d y n a m i c  mode  coupl ing  theory.  
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Phenomenological mode coupling theories are well tested for neutral fluids, 
where they are in complete agreement with microscopic calculations. (7) The 
question then naturally arises whether the mode coupling theory breaks 
down for systems where the particles interact through long range forces or 
whether the formal kinetic theories used in the literature are in error. In 
this paper we address this question. We analyze the long time behavior of 
the velocity autocorrelation function and of the kinetic part of the 
Green-Kubo integrands for the shear viscosity and the heat conductivity 
using the kinetic theory developed in detail elsewhere. (8~ The theory is 
systematic since it is based on a detailed analysis of the density expansion 
of the velocity correlation functions and the selection, in each order in the 
density, of those classes of collision sequences that are most important in 
the limit of interest. We find that the formal kinetic theories are incomplete 
and in general fail to identify the asymptotic long time behavior. The 
results of our work are in complete agreement with those of the mode 
coupling theory. (9'1~ 

It is important to stress that here we analyze only the kinetic parts of 
the shear current and heat current autocorrelation functions. For neutral 
fluids consideration of the kinetic part is sufficient to identify all the mode 
coupling mechanisms that contribute to the leading long-time behavior of 
the full Green-Kubo integrands. The analysis of the potential contributions 
to the shear viscosity and heat conductivity leads to no qualitatively new 
features--it only provides density corrections to the coefficients of the long 
time tails. (11) 

The situation is quite different for an electron gas. The potential part 
of the correlation functions contains contributions to the leading long time 
tails that are of the same order in the plasma parameter as those arising 
from the kinetic part and may even cancel some of the kinetic contributions 
(as happens for the shear current autocorrelation function). This point will 
be discussed in more detail below. Complete results for the long time tails 
of both the kinetic and potential parts of the shear current, heat current, 
and longitudinal current autocorrelation functions have been obtained 
using a phenomenological mode coupling theory and have been given 
elsewhere.(1~ 

Gould and Mazenko ~1~ and Baus and Wallenborn (2~ were the first to 
use the techniques of kinetic theory to calculate the long-time behavior of 
the time correlation functions that determine the transport coefficients of 
an OCP. Gould and Mazenko ~1) examined the velocity autocorrelation 
function (VACF) for a tagged particle in a moderately dense OCP. They 
found that this function has a slowly decaying oscillating long-time tail 
proportional to 

t -~/2 sin 69pl (l.1) 
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Here ! is the time and cop = [4rce2n/m ] i/2 is the plasma frequency, where n 
is the number density of the moving particles, m is their mass and e their 
charge. This oscillating long-time tail is to be contrasted with the t 3/2 
long-time decay of the VACF in neutral fluids. (11) Furthermore, recent 
mode coupling theory calculations for the OCP have shown the VACF has 
an additional contribution that is proportional to t 3/2.(9,1o) This algebraic 
long-time decay results from the coupling between a self-diffusion 
hydrodynamic mode and a viscous or shear hydrodynamic mode. The 
kinetic theory of Gould and Mazenko predicts that the amplitude for such 
coupling vanishes and the velocity autocorrelation function has no purely 
decaying t-3/2 long-time tail. 

Baus and Wallenborn (2) have used a formal kinetic theory to calculate 
the long-time behavior of the time correlation function that determines the 
shear viscosity. They considered both kinetic and potential parts and 
showed that the slow long time decay of such a correlation function is due 
to the coupling of hydrodynamic modes. In their theory the only important 
mechanism of mode coupling is, however, that of two plasma modes. They 
found that the leading asymptotic decay of the shear current 
autocorrelation function is proportional to 

(Ft)-3/2[1 + A cos(2cop t + ~b)] (1.2) 

Here F is the damping of the plasma modes and A and ~b are constants. A 
simple mode coupling theory predicts, however, that the coupling of two 
plasma modes can only lead to an oscillating long time tail ~ t  3/2 
cos(2copt+~b), while a purely decaying contribution, ~ t  3/2, is obtained 
from the coupling between two transverse shear modes. Such a coupling 
mechanism is not present in the kinetic theory of Baus and Wallenborn, 
since the corresponding amplitude vanishes in their theory. 

In this paper we extend the low-density kinetic theory presented in 
Ref. 8, to be denoted in the following as I, to describe a moderately dense 
OCP. This is done by a systematic analysis of the collision diagrams that 
appear in the density expansion of the velocity correlation functions. We 
show that the systematic theory leads to long-time tails (LTT) in the 
velocity correlation functions in an OCP that are in agreement with those 
computed on the basis of mode coupling theory. 3 The collision sequences 
that generate these long-time tails are identical in structure to the collision 
sequences that are responsible for the long-time tails in a neutral fluid. (~1~ 
This will be discussed in greater detail below. In the course of the 
calculations we also discuss the previous kinetic theory calculations. 

3 Using the hydrodynamic mode coupling theory of Kadanoff and Swift 112) it is possible to 
evaluate separately the kinetic and potential parts of the correlation functions. 
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The plan of this paper is as follows. In Section 2 we review the results 
of I and discuss the qualitative structure of our results, comparing them to 
the previous kinetic theories. In Section3 we present a systematic 
derivation of the ring kinetic equation in a OCP that leads to long time 
tails which are in agreement with the mode coupling theory. In Section 4 
we present our results and explicitly calculate the long time behavior of the 
VACF and the velocity correlation functions that determine the kinetic 
parts of the shear viscosity, r/, and the heat conductivity, 2. In Section 5 we 
conclude this paper with a discussion. 

2. BASIC EQUATIONS A N D  STRUCTURE OF THE THEORY 

2.1. Review of I 

To simplify the presentation, only the VACF is explicitly considered 
here. The results for the shear viscosity and the thermal conductivity will 
be quoted in Section 4. 

The VACF is defined as 

CD(t)= lim (Vlx(t)vlx) 
N,s cc 
N/(2 = n 

lira f d x  N l ) l x g  t ( x  N)  D N ( X N ) U l x  

N/[2 = n 

= f dv I Vlx~(1)l)I~)D(Vl, t) (2.1a) 

where N is the number of particles, Q is the volume of the system, 
x i = (ri, vi) denotes the position and velocity of the ith particle, S t(x N) = 
e x p [ - t L u ]  is the N-particle streaming operator, and LN is the N-particle 
Liouville operator, given by 

LN= i Lo(xi)--~ ~ 0o (2.1b) 
i= 1 iv~j 

with Lo(xi) the Liouville operator for a single particle i, 

0 
Lo(xi) = v ~ - -  (2.1c) 

0ri 
and, 
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Here rij= ]ri-rj] and V(ro) is the Coulomb potential between particles i 
and j, given by 

V(r o) = e2/I r i -- rjl (2. le) 

In Eq. (2.1) pev(x :v) is the equilibrium N-particle distribution function in 
the canonical ensemble and ~b(v) is the Maxwell distribution function, 

(fim) 372 e x p [ -  fimv2/2 ] (2.1 f) ~b(v) = \ 2~ ] 

By using standard cluster expansion techniques ts'll) a density expan- 
sion for the time derivative of @D(vl, t) can be obtained, with the result 

0~D(Vl, t )  
n ' -  16~,(Vl, t)Vlx (2.2) 

(~t s= 2 

where (g,(vl, t) is an s-particle operator that contains both dynamical 
operators and equilibrium distribution functions. The first few operators ~s  
are given by 

~57tfz(Vl, t) = q} l(Vl)fd2012U(lZ, t) g(2~ (2.3a) 

and 

67{1(V,, t) = ~ 1(Vl) f d2d3012 U(12I 3, t) ~I~162 1, r2, r3) ~(u3) ~(u2) ~(/)1) 

q- (~ l(Vl) f d2012U(12, t) g(21)(r, r2)~(v2)~(v1) (2.3b) 

and 

c~4(v~, t ) - - -  2! f d20~2 d3d4U(12134, l) g(~ r2, r3, r4) q~(/)4) q~(P3) 

+ 2 f d3U(1213, t) g(31)(rl, r2, r3) q~(v3) 

+ 2U(12, t) g(22)(r~, r2) ] ~b(v2) ~b(Vl) (2.3c) 

etc., where l =  xt = (r~, v~). Here U(1213, 4 ..... s, t), for s = 3, 4,..., N, are s- 
particle dynamical cluster operators, given by 

U(12, t )=  S_,(12) (2.4a) 
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and, 

g(12[3, t ) = S  , ( 1 2 3 ) - S  ,(12)S ,(3) (2.4b) 

etc. 
In Eq. (2.3) we have introduced the density expansion of the 

equilibrium configurational space distribution functions, g,. The latter are 
defined by 

f,(xl ..... x,) = nSg,(rl, r2 ..... r,) {1)(/51) �9 �9 . {/)(Ds) (2.5a) 

where fs is the s-article phase space reduced distribution function in 
equilibrium, defined in Eq. (A.1). The virial expansion of gs has the form 

gs(rl, r2 ..... r,) = ~ nlg~l)(rl, r2,..., r,) (2.5b) 
l=O 

The properties ofg~ t) used in this paper can be found for instance in Ref. 13. 
Similarly, we will write 

L(Xl ,..., xs )=  

with 

nlf~~ ..... xs) (2.5c) 
p = 0  

f(sl)(Xl,..., Xs) = O(Vl ) . . . O(Vs) g~')(r l,... rs) (2.5b) 

To proceed, it is convenient to introduce the Laplace transform of q5 D, 
defined as 

q~D(Vl, Z) = f ~176 dt e ~'q~D(V~, t) (2.6) 
~0 

for Rez > 0. Using q)D(V~, t = 0) = V~x, Eq. (2.2a) yields 

zCrPO(Vl ,Z)=[l  + ~ nS-t~s(V,,z)]Vlx (2.7) 
8 = 2  

where ~s(Vl, z) is the Laplace transform of ~s(v~, t). Equation (2.7) con- 
tains divergences in the limit Rez--+ 0 due to the contribution to the 
dynamical operators Cg, from sequences of s -  1 collisions among s par- 
ticles. A kinetic equation for ~0o(v ~, z) free of such naive divergences can be 
obtained by using the inversion procedure developed for neutral fluids. (14) 
The resulting equation is 

Iz-- ~ n t 1Bl(Vl,Z)] CrPD(Vl, Z)=V,x (2.8a) 
/ = 2  
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where Bi(Vl, z) is an /-particle collision operator. The first few operators BI 
are 

and 

and 

O2(Vl, z ) =  z~5~2(V1, Z) (2.8b) 

(2.8c) 

B4(Vl, z ) =  z•4(Vl, z ) -  ZL'~2(V l, Z) ~57~3(V 1, Z) 

-- Z~5~3(Vl, Z) G~2(Vl, Z)-~ Z[C~2(Vl, Z)] 3 (2.8d) 

etc. 
In I the kinetic equation given by Eqs. (2.8) was analyzed for a dilute 

electron gas characterized by a small value of the plasma parameter, ep = 
(4ten)t3) -1, where 2D is the Debye screening length, 20 = (4~zflne 2) 1/2. We 
found there that each term in the density expansion of the collision 
operator in Eq. (2.2a) diverges. By resumming the most divergent terms to 
every order in the density we obtained a non-Markoffian Balescu 
Guernsey-Lenard (BGL) equation for ~bD(Vl, z), given by 

[z - A~ z)] ~,,(v,, z) = v,x (2.%) 

Here A~ z) is the homogeneous "sell" BGL collision operator, 

f fdq As~ Z) =n{b l(Vl) dv2 ~ 0q(u v2) z - iq' v12 -- Vq(u 

X ~(/)1) ~(I)2) [9--q(Vl, u (2.9b) 

In Eq. (2.9b), v12=v~-v2 and 0,(vl, %) is the Fourier transform of 012 , 

with l~q=iqVq, where Vq=-m~e2/q 2 is the Fourier transform of the 
Couloumb potential. Also, ~(v2) is the Vlasov operator for particle two, 

G ( v ~  ~ . ' ~  r -m  (2.lOb) 
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with P2~ a permutation operator that permutes the labels 2 and 3. A Vlasov 
operator for particle one does not appear in Eq. (2.9b) since self-diffusion is 
considered here. In Eq. (2.9b), 0 is given by 

Oq(V,, v~) ~- 0q(Vl ' V2) ~- I dv3 nhDH(q) 0q(Vl, V3) ~(~)3) d 

1 ~ 1 0 
= S D H ( q ) ~ q ' ~ v  I ~ q ' ~ v  2 (2.10c) 

where hDH(q) and SDH(q) are, respectively, the pair correlation function 
and the static structure factor in the Debye-Hiickel approximation, given 
by 

(q)~D) 2 
SDH(q) = 1 +nhDH(q)= 1 + (q2D) 2 (2.10d) 

In the remainder of the paper we will derive corrections to the BGL 
kinetic equation, (2.9). To do this, it is convenient to use a diagrammatic 
technique. The rules adopted to construct the diagrams are as follows. 

(1) A diagram consists of vertical lines, horizontal bonds, crosses, 
and thick black circles. The vertical lines are labeled at their bottom with 
the particle labels 1, 2,.... The velocities of all particles except 1 are 
integrated over. 

(2) The operators and functions corresponding to the elements of a 
diagram are multiplied in the same order from left to right as they appear 
from top to bottom in the diagram. The same diagrammatic representation 
is used for collision sequences in time language and in Laplace language. 

(3) A cross and a vertical line segment at the top, ~, or bottom, ~ ,  
level of a diagram denote root points. For the VACF both root points have 
the particle label 1. 

(4) There is a factor n(~(vi) associated with each label i that is not a 
root point. The location of ne)(vi) in a diagram will be denoted by a thick 
dark circle, 0 .  Each diagram must also be multiplied by ~b l(vl). 

(5) Horizontal bonds are of three types: (i) statistical bonds that 
represent factors of the potential, as obtained from the potential expansion 
of the Mayer f functions, and are drawn as dashed lines: 
- f lVq=. ,  . . . .  ~,; (ii) dynamical bonds or 0 bonds representing the 
two-particle operator 0 0 and drawn as wavy lines, 0q(vi, vj). �9 ; 
(iii) O bonds, representing the function Oq(vi, vj)=-[~b(vi)~b(vj)] -1 
[0q(v~, vj) ~b(v~) ~b(vj)] and drawn as dotted lines, i.e., Oq(v~, vj) . . . . . . . . . .  
The O bonds arise because the kinetic energy is only conserved in the long 
time limit in a binary collision. 
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(6) Momentum or wave vector is conserved at each vertex and each 
internal wave vector is to be integrated over with a factor (2re) -3 

(7) The vertical position of 0 bonds and 0bonds  defines the levels in 
the diagram. In time language the bot tom level corresponds to the smallest 
time and an ordered time integration, ~/~ dtl ~'t~ dt2 ~',2 dt3,..., is performed 
over the times of all intermediate levels. 

(8) Internal vertical line segments between diagram levels represent 
free propagation of the particles, i.e., q~o = e x p ( - i q j  vjt). 

(9) A double vertical line segment between diagram levels denotes a 
free propagator that has been renormalized by a Vlasov operator, i.e., 

q~ Zo = e x p { -  t[-iq' V/- ~Fq(vj)] } 

(10) Thick dashed lines denotes static bonds that have been renor- 
malized to a Debye-Hiickel pair correlation function, i.e., 

1 
~ 2 3 2  ~ 1 hDn(q)=?, J = - - - - ( l + q , ~ D j  

, " - - J /  n 
q 

With these diagram rules the diagrammatic representation of A~ z) 
is given in Fig. la. Here A~ z) has been represented by the sum of two 
diagrams, corresponding to the two terms obtained by inserting Eq. (2.10c) 
into Eq. (2.9b). In Fig. lb we show the static diagrams that determine the 
Debye-Htickel pair correlation function, hDn (r j:), and in Fig. lc we show 
the diagrams that are summed to obtain the renormalized Vlasov 
propagator, f ( 2 ) .  

Our objective here is to derive the corrections to Eq. (2.9) that will 
enable us to consistently calculate the long time tail of the VACF in a 
moderately dense OCP, where ap< 1. In the range ap< 1 we can con- 
sistently solve Eq. (2.8a) by expanding about the solution of the BGL 
equation, Eq. (2.9). 

Equation (2.8a) is rewritten as 

[z - A~ z) - AB(v~, z)] ~D(Vl, Z) = Vlx (2.1 la) 

where 

JB(vl,z)= ~ n ~ ~tL(vl,z)-A~ 
/ = 2  

Equation (2.11a) can be solved iteratively by writing 

(2.11b) 

q~D(vl,z) = ~ ) ( v l ,  z) + ~ ) ( v ~ , z )  + ' . '  (2.12a) 
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As(Vl ,q:  o,z ) = -qs 

q 

- q  

+ -q  

(a)  

q 

3 2 

I 2 I 2 
I = ~  /I' 

I 2 3 

k 

(b)  

I 2 3 4 
+ \ + .... 

4t 
2 2 2 3 

(c) 

+ ~ + .... 

2 3 4 

Fig. 1. (a) Diagrammatic representation of A~ z), given by Eq. (2.9b); (b) first few 
diagrams that contribute to the Debye Hiickel pair correlation function, hDH(r12); (c) first few 
diagram that determine the renormalized Vlasov propagator, (2). 

where qs~)(v~, z) satisfies the BGL equation whose formal solution is 

~ ) ( v  l, z ) =  [ z -  A~ z)] -lvlx (2.12b) 

q '~(Vl,  z) is immediately evaluated by using Eqs. (2.10) and (2.11). It is 
given by 

~(v~, :)= [z-A~ z)] -~ ~B(v,, :)[z-A~(v,, :)]-lvlx (Z12c) 

The ellipsis in Eq. (2.12a) represent higher-ordr iterates, leading to plasma 
parameter corrections to q~). 
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2.2. Qualitative Structure of the Theory 

In this section we discuss the qualitative results of our theory for the 
long time tails of the VACF for a moderately dense OCP. 

Physically one anticipates that the long time tails in the VACF are due 
to correlated collision sequences where, for example, particles 1 and 2 
interact, then propagate via hydrodynamic modes and then interact again. 
It is this type of mechanism that causes the long time tails in neutral fluids. 
One might then guess, that the long time tails in a OCP could be obtained 
from a collision operator like that given in Eq. (2.9b) where the inter- 
mediate two-particle propagator contains, however, hydrodynamic modes. 
If we denote such an approximation for the kinetic operator AB by ABoo, 
then we would expect 

(-~g)3 0q(Vl' V2) Gs(Vl, v2, q, 2) 

• ~(V~) ~(V~) O q(V~, V~)--A~ ~) (2.13a) 

where Gs(Vl, v2, q, z) is the renormalized two-particle propagator, 

G s ( V l ,  Y2, q, z) ~- f ~  d[ e-ztlp(s)(vl, t) ]~q(V2, r 

f,/ 
+ioo dzl 

= i~ 2~i [ z l - i q ' v l - ' ~ ' ( v l '  - q ,  zl]  ' 

x [z - z~ + iq" V 2 - -  ~ q ( V 2 )  - -  A ( v 2 ,  q,  z - -  z I ) ]  -1  (2.13b) 

Here ~ defines a contour to the right of all the singularities of (z~ - iq- vl - 
~s(Vl, __q, Zi)] 1 and F ( F  ('~) is the BGL propagator for fluid (tagged) par- 
ticle motion in time representation. In Eq. (2.13b) As(vl,q,z) is the 
inhomogenous BGL collision operator for tagged particle collisions, given 
by 

~,(vl, -q ,  z) ~(vl)= ~(v~) A,(vl, -q ,  z) 

C f dq' 0q,(vl , v2 ) [ z+ i (q_q , ) . v l+ iq , . v2_~q , (v2 ) , ]_1  = n j dr2 
3 (2n) 3 

x ~b(vl) ~b(v2) 0 q,(Vl, v2) (2.14a) 

It is related to the homogeneous operator defined in Eq. (2.9b) by 

A~ z ) =  As(vl,  q = O, z) (2.14b) 
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and 

A~ 1, z) = A,(Vx, q = 0. z) (2.14c) 

Finally, 3(v2, q, z) is the inhomogenous collision operator for fluid particle 
collisions, 

As(v2, q, z) ~b(v2) = ~b(v2) A(v 2, q, z) 

=n f dv3 f dq' Oq,(V2, V3)[z+i(q_q,).v2+iq,.v3 

-- ~ q - q ' ( Y 2 ) -  ~ ; ' ( U 3 ) ] - 1  ~(V2 ) (~(D3) 

x [0_q,(V2, v3)+ 0q q,(v 3, v2)P12] (2.1d) 

It should be remarked that throughout the calculations outlined in this 
paper one must be very careful about the location of the Maxwell dis- 
tribution functions since the kinetic energy is not conserved in a binary 
collision. The appearance of the 6 bonds in diagram rule (5) is a con- 
sequence of this. However, as discussed in I, for long times or small z our 
collision operators do conserve kinetic energy so that in this limit 
A,(vl, q, z --+ 0) = A,(vl, q, z --+ 0), etc. 

In Fig. 2a we illustrate the diagrammatic representation of the first 
term in Eq. (2.13). The thick lines denote that the intermediate propagators 
contain the effects of collisional damping and hydrodynamic modes (cf. 
Section 4). In Figs. 2b and 2c we show the first few diagrams that deter- 
mine the renormalized propagators of Fig. 2a. 4 

When the propagators in Eq. (2.13b) are decomposed on the basis of 
the hydrodynamic modes (cf. Section 4) the LTT of ~/'D(vl, t) given by 
Eq. (1.1) is obtained because of the coupling of the self-diffusion mode with 
the plasma modes. ~1~ This result is to be contrasted with that of the 
phenomenological mode coupling theory, which in addition leads to a t 3/2 
tail, due to the coupling between the self-diffusion hydrodynamic mode and 
a shear hydrodynamic mode. This coupling mechanism is not contained in 
Eq. (2.13) (the corresponding amplitude vanishes) and hence only an 
oscillating LTT result from the analysis of ABoo. 

With this in mind it is worthwhile to reconsider the structure of 
Eq. (2.13) and compare it with the ring operator that leads to the LTT in 
neutral fluids. Although they are very similar there is one important 
physical difference. In Eq. (2.13) the first and last collisions are weak 

4 We have used the same diagrammatic notation for the tagged and fluid particle BGL 
propagator. Both are represented by thick vertical line segments. 
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&Boo +As =-q 

q ! q 

--q ~ -~ ,......' 

i 2 i 3 2 

(a) 

I ~! -'gq 2 ~t ~ "-~'' ~-~, ~ , ~ t  ~, 
l 3 ~ 2 K1 -~' 

I 2 3 

(b) 

= + 

+ + 

(c) 

+ + 

~ek, tXf% 

Fig.2. (a) Diagrammatic representation of Eq. (2.13); (b) first few diagrams that determine 
the hydrodynamic tagged particle propagator; (c) first few diagrams that determine the 
hydrodynamic fluid particle propagator. 
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collisions, involving only one 0 operator, whereas in the usual ring 
operator that leads to the LTT the first and last collisions are strong 
collisions, involving at least two 0 operators. A collision is defined here as 
strong when the velocities of the colliding particles are correlated at the end 
of the collision, i.e., the action of the binary collision operator for particles 
1 and 2 on a function of vl results in a function not only of vl, but also of 
the relative velocity, v12. This is, for example, the case for a hard sphere's 
binary collision. In contrast, the action of 012 on a function of Vl always 
leads to a function of v~ only. The interaction governed by the operator 0~ 
does not result in velocity correlations and will be referred to as a weak 
collision. A strong collision is the process governed by the kernel of the 
BGL operator, which can be regarded as an effective binary collision 
operator in a OCP. This is an important point since physically one expects 
that the correlations that lead to the LT are most effectively established by 
strong collisions. Indeed we show below that when the density expansion of 
the collision operator AB defined in Eq. (2.11) is analyzed systematically, 
one obtains, in addition to Eq. (2.13), a collision operator that has the 
same structure as ABoo, where the first and last collisions are, however, 
strong collisions. We then show that this new strong collision ring operator 
leads to the same LTT as the phenomenological mode coupling theory. 
Furthermore, a careful analysis of the diagrammatic expansion also leads 
to the identification of operators that are similar to Eq. (2.13), except that 
only the first or last collisions are strong collisions. We show that these 
operators do not lead to a LTT proportional to t-3/2. 

Finally, it is easy to show that weak collisions involving only one 0 
operator in fluids interacting through weak short-ranged potentials do not 

lead to the usual long time tails in these fluids. 

3. DERIVATION OF THE STRONG COLLISION RING 
OPERATOR 

In this section we derive a ring collision operator for the OCP where 
both the first and last collisions are strong collisions. The basic 
idea--which makes the theory systematic--is to first sum all the graphs 
that renormalize the propagators between any initial and final collision to 
hydrodynamic propagators. This defines right and left vertex functions. The 
vertex functions can be again expanded in powers of the density for small 
wave number of the intermediate hydrodynamic propagators. They can 
then be systematically evaluated for a dilute--or moderately dense--OCP 
by retaining only those contributions which are most divergent to every 
order in the density or plasma parameter. The result is that the vertex 
functions become BGL-like collision kernels which incorporate the effects 
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of strong initial and final collisions. In Section 4 we show that this ring 
operator leads to LTT which are in complete agreement with the results of 
mode coupling theory. In the present work we assume that the two-mode- 
coupling terms are responsible for the dominant LTT and that the con- 
tributions involving the coupling of three or more modes can be neglected. 
An explicit calculation that justifies this for neutral fluids has been given 
elsewhere.(15) 

The derivation of the ring operator for OCP is considerably more 
complicated than the corresponding derivation for a neutral fluid. This dif- 
ficulty stems from the long range nature of the Couloumb potential. Infinite 
resummations are needed to properly take into account the dynamical 
screening in constructing the BGL-like collision kernels. Further, as 
already discussed in I, static correlations must also be treated carefully 
even for a dilute OCP, due again to the long range nature of the potential. 

Before presenting the details of the derivation, it is instructive to sum- 
marize the results. By analyzing the operator AB for a moderately dense 
OCP, we identify four kinetic operators that have the structure of ring 
operators. In all these operators the intermediate propagator is the tenor- 
realized two particle propagator Gs, defined in Eq. (2.13b), that contains 
hydrodynamic modes. The four ring-like operators differ according to 
whether the first and/or last collisions are weak or strong collisions. The 
operator where both the first and last colli~sions are weak was defined in the 
previous section and denoted by ABoo. Here we will refer to this con- 
tribution as OGsO. The other three kinetic operators have the structure 
T~GsO, OGsTs e, and T~G,T, R, where T~ (T~) denotes the operator or vertex 
corresponding to a strong effective binary collision to the right (left). It is 
shown below that T~ (T~) has a structure analogous to that of the kernel 
of the BGL operator As [A,*, where the dagger denotes the adjoint, as 
defined in Eq. (B1)]. As previously mentioned, only the T~G~ T~ term con- 
tributes to the leading power law long tirae decay of the VACF. 

The general two-mode diagram containing all the four contributions 
listed above is shown in Fig. 3a. Here the hatched boxes denote complete 
left (top) and right (bottom) vertex functions, containing both the weak 
collision operator, 0, the and strong collision operators, T~ and T, e, respec- 
tively. In Figs. 3b and 3c the complete top and bottom vertex functions are 
written explicitly as the sum of terms corresponding to weak collisions, 
represented by 0 bonds, and terms corresponding to strong collisions, i.e., 
to the binary operators T~ and T~, represented here as shaded boxes. In 
the diagrammatic represention of the right vertex function we have omitted 
the diagrams containing 0 bonds: the complete right weak collision 
operator is given by the first two diagrams on the right-hand side of Fig. 3c 
plus the same two diagrams with 0-bond replaced by a 0 bond. By the last 
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equality in Figs. 3b, c we have also anticipated that since for small z the 
relevant contribution will come from the small-q region (here q is the 
variable that labels the hydrodynamic modes of the renormalized 
propagators), the vertex functions can be approximated with their q ~ 0 
limit as long as they are nonsingular in such limit. The operators T~ and 
T~ corresponding to strong collisions are indeed well behaved as q ~ 0. 
This is not, however, true for 0q and 0q. 

We now outline the procedure used to systematically identify all the 
collision sequences contributing to the right and left vertices of the two- 
mode diagram of Fig. 3. Since we are assuming the interaction potential to 
be weak, we expand both the dynamical operators and the static 
correlation functions in Eqs. (2.8) in powers of the potential. We then 
analyze in detail the collision sequences contained in each operator B2, B3, 
etc., and develop an ordering scheme that enables us to determine T~ and 

rs 
In order to exhibit the general structure of the operators Bt, it is often 

convenient to shift the location of the static correlation functions with 
respect to the propagators. The shifting rules are obtained by inserting the 
density expansion of the equilibrium distribution functions, given in 
Eq. (2.5c), in the equilibrium hierarchy and equating terms of the same 
order in the density. For instance, to lowest order in the density one 
obtains, 

L,(1 ..... s) f~.~ s ) = 0  (3.1) 

with f ,  ~~ given by Eq. (2.5d) for 1=0. 
The analysis of B 2 is straightforward. Using Eq. (3.1) for (s = 2) with 

f~o)( 1, 2) = qJ(vl ) ~b(v2)(1 + f12) (3.2a) 

where f0 is the Mayer f functions for particles i and j, B 2 can immediately 
be rewritten in the form 

nB2(1, z)=n(~ 1(1)l) f d2012G(12)~(l)l)O(v2)(l-[-f12)O12 (3.2a) 

Both the propagators G(12) and the Mayer function J12 are then expanded 
in powers of the potential, as discussed in Ref. 7. In Figs. 4a, b, c we show 
the diagrams corresponding to the terms of such an expansion of B 2 that 
contribute to OG~O, T~G,O and OGsT~, and T~GsT~, respectively. We note 
that Fig. 4a actually contributes to A ~ so that it is subtracted in Eq. (2.13). 
Further, we shall see below that to construct both T~G,O and OGsT~ we 
need two of the diagrams given by Fig. 4b. The addition of diagrams 

822/41/3-4-19 
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without renormalized intermediate propagators is of no consequence for 
the LTT. It follows from the ordering scheme given below that the terms in 
B2 containing static or equilibrium correlations can be neglected in con- 
structing the LTT ring operator for moderately dense OCP. Figure4c 
defines the contribution of O(n ~ to T~ and T~, denoted with T~ ,L(~ and 
given by 

dql 
T~(~  v2, q, Z)=f (-~)3 0-ql(Vt, V2)[Z+ i(q,--q)'v12] 1 

x [-0q~ q(vl,v2)] (3.3) 

The left vertex T, L(~ is given by a similar expression. We note that T, er176 and 
Ts L(~ diverge logarithmically as q, z ~ 0. Correspondingly, we classify T, el~ 
and T~/~ contributions of O(n~176 In analogy with I we expect T~ and 
T~ to be given by an infinite series where the /th term, arising from B~, 
diverges as [n/q2] l 2 (/= 2, 3,...). The terms of O(n/q 2) can then be iden- 
tified by analyzing B 3 . 

The analysis of B 3 is considerably more complicated than that of B2. 
There are three distinct classes of terms: (1) diagrams that begin to renor- 
realize the free propagators in the diagrams of Fig. 4 to the renormalized 
propagators given in Fig. 2b5; (2) diagrams that determine the first-order 

s It should be remarked that the resummation to renormalized two-particle propagators given 
by (2.13b) is most conveniently performed in time language since only then do the 
propagators for tagged and fluid particle propagation commute. 
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corrections to the vertices T L and T~; (3) diagrams which do not con- 
tribute to the LTT to leading order in the plasma parameter. (This includes 
diagrams that represent the coupling of more than two modes.) 

As done for B2, to write B 3 in a convenient form we use Eq. (3.1) 
together with the following identity: 

f(2~/(1, 2) Go1(12) = G o ~ ( 1 2 ) f ~ ( l ,  2) + f d3(013 + 023 ) f(3~ 2, 3) (3.4a) 

where 

G o ( 1 2 ) = [ z + L o ( 1 ) + L 0 ( 2 ) ]  i (3.4b) 

Equation (3.4a) follows directly from the equilibrium hierarchy equations 
for the equilibrium distribution functions to first order in the density. The 
collision operator 8 3 can then be written as 

z) = n2~b-l(v~) f d2d30,2G(12 )[f23(1 + f ~2) O(v2) f(2~ )O~3 n2B3(1, 

-t- 0,3f23(1 + f , 2 )  G(13) 4(v2)f(2~ 

+ (013 + 023) G(123)f(3~ + 023) G(12)0~2 

+ (012 -t- 023 ) G(13)013 ] 

+ (013 + 023)(1 +f23)(1 +f l~)  ~(v2) G(13)f(f)(13)013 

+ ft3f32f(2~ 0(/)3)012~] 

where 

(3.5a) 

f~~ 2, 3) = ~b(v~) ~b(v2) ~b(v3)[ 1 + f , 2  +f~3 +J23 +f,2f~3 

+ f12fz3 +f,3f23 +f,2f,3f23] (3.5b) 

A detailed analysis of the expansion of Eq. (3.5a) in powers of the 
potential allows us to identify the contribution of O(n/q 2) to T~ and T L for 
z - .  0 and q ~ 0. The relevant contributions are given in diagrammatic 
form in Figs. 5a, b, respectively. In B 3 one also finds the first diagrams that 
are needed to construct the renormalized tagged particle and fluid particle 
propagators of Figs. 2a and 2b, respectively. Finally, in B3 we neglect 
diagrams that involve the coupling of more than two hydrodynamic modes 
or that represent corrections to T~ ,L that are less divergent than n/q 2. 

The four-particle collision operator B4 can be analyzed in a similar 
way. Because of its complexity we discuss only its structure here. First, it 
contains diagrams that contribute to the propagators in Fig. 2. Secondly, it 
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contains diagrams that represent correction of O([-r//q2] 2) to Tff 'c. The lat- 
ter class of diagrams has, however, a particularly simple structure. Their 
role is simply to start the renormalization of the static bonds in Figs. 4a, b 
to Debye Hiickel pair correlation functions and the resummation of the 
fluid particle propagators to Vlasov propagators. We assume that this 
remains true to every order in n/q 2, i.e., that in each Bt, for 1/> 5, there are 
no topologically new most singular corrections to the top and bottom ver- 
tices. Each Bt, for l/> 4, also contains terms that do not contribute to the 
two-mode coupling diagram or are responsible for corrections to the ver- 
tices that are less singular than those considered here. 

We can now identify the top and bottom vertices T~ and T~. We will 
not, however, give here their exact expression explicitly. Instead, we 
observe that to evaluate the contribution of the two-mode diagram given in 
Fig. 3 to the long time tail of the VACF, we will, in the limit z --* 0, use a 
spectral representation of the intermediate propagators on the basis of their 
hydrodynamic modes (cf. Section 4). As a consequence, the collision ver- 
tices T~ and T~ will always act on hydrodynamic eigenfunctions, that, to 
lowest order in q, are a linear combination of the five conserved densities. 
Specifically, when evaluating the long time tails we will only need the 
limiting form of T sR'L(v~,v2, q ' z) for Rez--, 0 +  when acting on the unit 
function for label 1 and on the five conserved densities O~(Va)= { 1, v2, v 2 } 
for label 2. Such limiting forms are defined by 

l i m  f dvlv2A(Vl) L 
Rez ~ O- 

and 

= lim + f dv~ dv2A(v,) T~(v~, v2, q, Z) ~(l) l) ~(U2) tp~(v2)(3.6a) 
Ree ~ 0 o 

l i m  f d v  1 d v  2 i//c~(V2 ) R Ts, H(Vl, t / 2 ,  q, z)~b(vl) q~(v2)A(vl) 
Rez ~ 0 + 

= lim f dv I dr2 0~(v2) T y ( v  1 , v 2, q,  Z) ~(U1) ~(/)2) A(vl),(3.6b) 
Rez ~ 0 + 

where A(v) is an arbitrary function. The explicit form of T~.  and T~H is 
given in diagrammatic notation in Figs. 6a and 6b (the diagrams contain- 
ing 0 bonds are not shown). 

Their analytic expression is 

r~.(v~, v~, q, z) 

= f  dql (-~)30q~_,(vl,v2)GV(vl, v2)[O_q~(vl,vz)+O_q~(vl,v2)] (3.7a) 
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and 

rs(~(Vx, v~, q, ~)= E~r~.(v~, v2, q, z)3* 

E 0qlIv,, v2t a~(Vx, v2, ql, z) 

~- F/ f dV30qt(Vl, V2)Gf(vl, v3, ql, z)hDH(ql)~(U3) ] 

x [0q qL(vl ,v2)+0q q,(Vi,V2)] (3.7b) 

where 
GsV(V1, V2, q, z) = [z - iq'  v12 - ~ ( v 2 ) ]  I (3.7c) 

and 0q is defined, in analogy with 0q, as 

0q(Vi, vj) = -qb-'(vg) ~b-l(vj)[0q(V,, vj) ~b(vi) ~b(vj)] (3.7d) 
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The identity T ~ , =  ITCH] + is proved in Appendix B. We have shown that 
TfH and T~f/are indeed given by Eqs. (3.7a, b) by evaluating explicitly the 
right-hand side of Eqs. (3.6a, b) using techniques analogous to those 
employed in Appendix B to prove the properties of R.C T~, H . An alternative 
proof is also provided by evaluating term by term the density expansion of 
the right-hand side of Eqs. (3.6a, b) and verifying that the result is to each 
order identical to the density expansion of T~, and T~H. 

We can now write the explicit form of the four ring-like collision 
operators discussed earlier. Denoting these operators by ABoo, already 
given by Eq. (2.13), ABro , ABor and A B r r  , we have 

dq 
f T~h,(V 1 V2, q, Z) Gs(Vl, v2, q, z) ABTo(v1, Z)~--FI~ 1(~)1) ~ 

X ~(U1)~(/)2) 0 q(u u (3.8a) 
and 

ABoT(V 1 , z) = H~_I(uI) I ~d~ Oq(Yl, V2) Gs(Vl , v2, q, z) 

(3.8b) 

and 

i dq ABTT(u Z)~---Y/~ I(U1) ~ TsL, H(Vl, u q, z) G,.(vl 

R N T/H(V1, V2, q, Z) @(/)1)~(U2) 

Combining Eqs. (3.8), (2.12), and (2.1) we also define 

,v 2, q, z) 

(3.8c) 

C(D)I~(Z)~- J dDlO(1)l)Vlx[Z-- AOs(yi, Z) ] I AB~[3(Y1)[z- A~165 z) ] -1/)Ix (3.9) 

with ct, fl = 0 or T. 

4. E V A L U A T I O N  OF THE LONG T I M E  TAILS 

In the first part of this section we list the hydrodynamic modes of the 
BGL propagators defined in Eq. (2.13b). The hydrodynamic eigenvalues 
and eigenfunctions have been derived elsewhere (11'16) and are needed here 
to determine the long time behavior of the VACF. 

Next, we evaluate explicitly the long time, or small-z, limit of Eq. (3.9) 
for ~= fl= T. We obtain a t 3/2 long time tail for the VACF, Co(t), in 
agreement with the results of the phenomenological mode coupling theory. 
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The analogous LTT results for the kinetic parts of the correlation functions 
that determine the shear viscosity, r/, and the heat conductivity, 2, are 
quoted. 

Finally, it can be shown that the contributions to the VACF given by 
Eq. (3.9) for (e, fl) = ((0, 0), (0, T), (T, 0)) (i.e., corresponding to the case 
when the first and/or the last collision in the ring operator are weak 
collisions) only contain oscillating long time tails of the type given in 
Eq. (1.1). The same holds true for the other transport coefficients. Below we 
argue that these oscillating LTT should be neglected in a consistent theory. 

4.1. The Hydrodynamic Modes 

To derive an explicit representation for Eq. (2.13b) we make a spectral 
decomposition of the two propagators in Gs(vl, v2, q, z). Since we are 
interested only in the long time behavior of CD(t) we can restrict ourselves 
to the low-lying or hydrodynamic modes of these operators. These modes 
are distinguished by the vanishing of their damping as q2 for q ~ 0. The 
eigenvalue problems to be solved for tagged particle motion and fluid par- 
ticle motion are, respectively, 

[iq'  Vl - A~ -cos)]  IO~(v,, q) )~ = coslOf(v,, q) )~ (4.1a) 
and 

[ iq 'v:-Vq(V2)-A(v2,  q, -co~)] IO~(v2e , q))~ =co~{ O~ (v2,R q))o (4.1b) 

Here we have used that for small values of the plasma parameter we can 
neglect the q dependence of the collision operators. In Eqs. (4.1a, b) we 
have introduced a bra and ket notation and defined an inner product in 
velocity space as 

( f l  g>~ = f dvf(v) g(v) ~b(v) (4.1c) 

for any f and g. In this notation the weight function is in the ket vector, as 
indicated. In Eqs. (4.1a, b) co s is the hydrodynamic eigenvalue for tagged 
particle motion (self-diffusion) and co~ denotes the five hydrodynamic 
eigenvalues for fluid particle motion; the O R are the corresponding right 
eigenfunctions. Since these eigenvalue problems are not self-adjoint there 
are also analogous left eigenvalue problems with eigenfunctions O~. 

For small q the above eigenvalue problems can be easily solved by a 
standard technique. 6 For the self-eigenvalue problem one obtains 

COs(q) = D q  2 + O ( q  4) (4.2a) 

6 The solution of the eigenvalue problem is based on the introduction of an operator that pro- 
jects on the space spanned by the quantities that  are conserved in a binary collision. A 
description of the method,  used there in a different contest, can be found for example in 
Ref. 17. 
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and 

1 O L O~(q, Vl) = [ s(q, v l ) ] * = l + A o ( v l , 0 i i q . v , + O ( q 2 )  (4.2b) 

where the asterisk denotes the complex conjugate. In Eq. (4.2a), D is the 
self-diffusion coefficient to lowest order in ~p, 

1 
D = - ( t ] - V l [ - - [ ~ ' v , ) +  (4.2c) 

~~ 0) 

where ~ = t]/Iql. 
The fluid hydrodynamic eigenvalue problem is also easily solved. 

There are five long wavelength modes in the fluid, corresponding to the five 
conserved densities: two shear modes, one heat mode and two plasma 
modes. The eigenvalue and eigenfunctions for the shear modes are 

and 

2 i w~,(q) = cojq) = vq 7- O(q 4) (4.3a) 

kinematic viscosity, given by 

1 
V' = --mfl<tt'v2(li'v2! ~ ]q" v2~]i' v2 )r (4.3c) 

A(V2, 0, 0) 

There is a single heat or entropy mode, with eigenvalue 

o)H(q) = Drq  2 + O(q 4) (4.4a) 

and eigenfunctions 

/2\1/2F1 2 3 
Of4(q, v 2 ) : ~ ~ )  L-~rnflv2 2 

and 
~_(2~l/2[Lm~u2 

O ~ ( q ,  v2) \ 3 /  L 2 

1 1 2 5 , 
A(v2, 0, o) iq" v2 (2mf l v2 - -2 )  + O(q -) 

(4.4b) 

2 A(v2, 0, 0) iq'v2 \2 mflv2-  + O(q2) 

(4.4c) 

rOL~- ]* 

[ ' ] = (raft) 1/2 ~l"v2 +iq~gl'~ A(v21 0, 0) v2~v2~ + O(q 2) (4.3b) 

for i=  l, 2. Here (~], ~]1, ~]2) form a set of orthonormal unit vectors, and the 
summation convection has been used. In Eq. (4.3a), v is the zero-frequency 
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Here D r = 2/pCv, with C~ = C o = 3kB/2m the specific heat per unit mass of 
an ideal gas, is the zero-frequency thermal diffusivity given by 

2 1 ~!" v2 (~mfiv~-~))~ (4.46) DT=--- -~l ( t ' v2(~mfl l j22--~)  ~(v2,0,0 ) 

Finally, there are two high-frequency plasma modes--the imaginary part of 
these eigenvalues does not vanish as q--* 0--that take the place of the 
sound modes of a neutral fluid. The eigenvalues are given by 

q2 
o9,~(q)=iaOgpIl+~p(C2+Tp)l+~FpqZ+O(q4 ) (4.5a) 

\cop 

for a = +1, and the corresponding eigenfunctions are 

O,(q, u (-~--~)1/2Io-q' v 2 't ~----(mfl)l/2q2DU2 

and 

1 (v2= v2~--~1 6=/3v2) + 2  ] + iaq O~qn O(q2)j 
iar + A(v2, 0, --ia(Op) 

(4.5b) 

Here c 2 is the low-density speed of sound, c2= 5kBT/3m. In Eq. (4.5a) 

yp = 26 Im Kp, Fp = 2 Re Kp (4.5d) 

with 

1 I(q.v2)2 _~]>0 
iar + A(u 0, -ia(/gp) 

(4.5e) 

O~(q, v2)= \ - - , ,  ~at]'v2)-t q2D +----'~-- q2DV~ 

+ q +~7p--~Fp 

1 --~6~v~ +O(q 2) 
- iaq iafOp "-F A(v 2, 0, -- lifO)p) Oc<O~ 1)2~v2/~ 

(4.5c) 
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We remark that the terms of O(q) in the hydrodynamic eigenfunctions 
will not contribute to the LTT obtained from Eq. (3.6) for a = fi = T. This 
is also the case for neutral fluids. We give these correction terms here 
because they are needed to consistently establish that Eq. (3.6) for c~ and/or 
/3 = 0 does not lead to an asymptotic LTT. 

4.2. Evaluation of Co(t) for Long Times 

An explicit representation of Eq. (2.13b) that applies for small z or 
long times is obtained by keeping only the hydrodynamic modes in the 
spectral decomposition of the two propagators in G,(v~, v2, q, z). The con- 
tribution from nonhydrodynamic modes can easily be shown to lead to an 
exponential decay of the time correlation functions. Similarly, branch point 
singularities do not contribute to the leading asymptotic long time tails/~6~ 
For small z, the spectral representation of the two-particle propagator 
Gs(u u q, z) is approximated by 

C ( I )  e DTT ( ) =  

Cs(Vl, F. I o . f ( v , , - q )  R O~(V2, q)>~ 

x [z+co,(q)+cojq)] ' < O ) ( v , , - q )  L O=(v2, q)l (4.6) 

where the sum is restricted to the five hydrodynamic modes. For small z, 
the contribution to the VACF arising from the class of collision sequences 
contained in the ring operator ABrr is then obtained by combining Eqs. 
(3.9), (3.5c), and (4.6), with the result 

Z nJ ~dq <Vl...cI[Z__7~Os(u191 
:x - -  v,G,H 

x T~H(vl, v2, q, z)]OsR(V,, --q) R O= (v2, q)) r  + COs(q) + CO=(q)] ' 

x <OL(Vl, --q) OL(%, q)[ T~H(+ 1, *2, q, Z)[Z- .30(V~, z)] --11Dix>q 5 

= Z dq . . . . . .  . [ 3~  1 

x T~o(vl ,v2) lO~(vl ,q=0 ) R O=,o(V=, q) > ~[z + CO,(q) + oG(q) ] 

x ( O L ( v t , q = 0 )  c V v2)[As(v~,0)]-llvi:,>4 G,o( q)l rfo(v , -o 

(4.7a) 

where 

TR, L[v ,,o~ l , V j =  lira lira R.L T,',v (v I, v2, q, z) (4.7b) 
R e z ~ O  + q ~ O  
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and R qO O~,o(V, q) and L O~,o(V, q) denote the eigenfunctions up to order [these 
do not necessarily coincide with R,L = 0), since L O~ (v, q O~ contains terms of 
O(1/q)]. In writing the last equality in Eq. (4.7a) we have used that in the 

(-(1) z z--} 0 limit the dominant contribution to "~D~( ) comes from the q ~ 0 
region of the q integration. The T operators are nonsingular functions in 
the limit q, z ~ 0. 

In Appendix A we show that 

-~TL~v v~)lOf(v~ q 0) <Vlx ] [ A ~ 1 6 5  s.0t ~, �9 , = O~,0(V2, q)>o 

= - - n  l(Vlx I R O~,0(v~, q))~ (4.8a) 

and 

<OsL(VI, q = 0 )  L O=.0(V2, q)IT~o(V,, v2)[As~ 0)] I I/)lx>~ 

= - n  '<O~,o(V 1, q)lv~x>~ (4.8b) 

Similar identities are also valid for neutral fluids. (ts) Finally, making use of 
Eqs. (4.8) as well as of the explicit form of the hydrodynamic eigen- 
functions and eigenvalues, given in Eqs. (4.2)-(4.5), and transforming to a 
time representation, we obtain 

C ( 1 )  / ~ < IO.~o(Vl,q)>~<O~,o(vl q)lvlx>~ DTT() Z I dq o;=v,cY,H' ~ Vlx 

x exp{ - t[cos(q) + co~(q)] } 

2 ( 1 1 
- 3flnm ~ [4~t(D + v)] 3/2 + (4gt) 3 / ~  

COS(Opt + c]) "( 
)< [ (O  -~ 1/~p) 2 ~- (c2/2(Dp _~_ ~p)l~ 2 ] 3/4 -]- 0(1/t5/2) S (4.9a) 

with 

3 (c2/2C~ + "/p/2  = tan 1\ / (4.9b) 

Equation (4.9) is identical to the result obtained for the LTT of CD(t) using 
phenomenological mode coupling theory. (9"1~ 

The oscillatory LTT contribution in Eq. (4.9a) approximately averages 
to zero for long times and can be neglected compared to the first term in 
Eq. (4.9a). This first term is identical to the result obtained for neutral 
fluids. (~ l) 
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4.3. Long Time Behavior of C.(t) and C~(t) 
The time correlation functions that determine the kinetic parts of the 

shear viscosity and heat conductivity are, respectively, 

C.(t)= lim 1 <~ ~ (vj)) N.O ~ ~ ~ j.(vi(t)) j .  
N/g2 = n i 1 / = i 

= H  f dv 1 ~(v~)j~(vl)@~(vl, t) (4.10a 

and 

c~(t)= lim i< ~_~ i )> N,~ ~ co ~ j~.(vi(t)) j~(V/ 
N/g2 = n i 1 j = 1 

= n f 4vi ~(v,) jAv,)  ~Av, ,  t) (4.10b 

where the one-particle currents Jr and jx are given by 

jn(u ) = t31~Vlv 

and 

J ~ . ( v , ) =  Vl.~ ( 2  m f l t J 2 - - ~ )  

(4.10c 

(4.10d) 

Kinetic equations for @, and 4~. can be derived by following the same 
procedure as outlined in Section 3 for ~D. The details are not given here. 
As for CD, the dominant LTT arise from a ring collision operator where 
both the first and last collisions are strong collisions. Adopting the same 
notation used for the VACF, C(J~!~(z) (# = r/, 2) is given by 

C(1)=n2f~(y,(v,)][z A(v,,q O,z)] ' L - = TH(v~, v2, q, z) 

• G(vl,v2. q,z) T~(vl, v2, q = 0 ,  z ) l - z - A ( v l , q = 0 ,  z)] l lj~(vl)>~ 

(4.11a) 

where G(vl, v2, q, z) is the renormalized propagator for two fluid particles 
[cf. Eq. (2.13b)], 

G(vl, v:, q. z) = dt e-~F_q(Vl,  t) Fq(V2, l) (4.11b) 
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and T~ 'L represent the "hydrodynamic part" of the strong binary collision 
operators, given by 

T~(Vl, V2, q, z) -- I dql 0ql_q(Vl , V2) GV(Vl, V2, q~, z)(1 + P,2Pqi,--qi) 

x [-0 ,~(vl,v2)+O_,~(vl,v2)] (4.11c) 

where Pq,_ q changes the sign of the wave vector q, and 

TL(Vl, V2, q, z) = f ~ 0ql(u V2) GV(Vl, V2, q,, Z) {0q _ qt -~- 0ql--ql (vl '  u 
J (2z) 

+ n f dv3hDH(ql)(Pl3 + P23)[0q - ql(v,, v2) + 0q q,(Vl, v2)] qS(v3) } 

(4.11d) 

Here GV(v~, v2, q, Z) is a two-particle Vlasov propagator, given by 

GV(v,,v2, q, z)= [z_  iq. v12-~F q(Vl)-- ~q(u -1 (4.1 le) 

The long time limit of Eq. (4.11a) can be evaluated as done for the 
VACF. Inserting two sets of fluid particle hydrodynamic modes and using 
identities similar to Eqs. (4.8) one obtains 

C ~  ~ f dq ~rr..  2 /3= o., '~'~ (j~(v~)lO~R'~ q) Off, o(vl, q) >~ 

x (O~,o(V~, - q )  O~,o(vl, q)Ij.(v~)>~ exp{ -t[c%(q) + ~%(q)] } 

(4.12a) 

Making use of the explicit form of the hydrodynamic eigenvalues and 
eigenfunctions, the long time behavior of C~l~r is easily evaluated, with the 
result 

7 1 
~ ~  15/~2 (8~vt ) 3/2 

1 I 1 1 cos(2OOpt+Op) 
+ 1 ~  . (4rrrpt) 3/2 + (4~t) 3/2 [(c2/cop + 7p) 2 +/~p] 3/4j 

1 1 cos(COpt+Ovp) ( 1 )  
lr- ~213/4+0 t-~ (4.12b) + 5fie (4rct)3/e [(c2/2cop + �89 + (v + ~. p, j 
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and 

C(x) ,~ 25k e ~ 1 
:-rr 6m2C~ 3 [[4rct(v + DT)] 3/2 

+ 2 ( 4 ~ t ) ~ / ~ [ ( D T + � 8 9 1 8 9  + ~  t-~ (4.12ci 

where 

and 

and 

3 1 2 ,  t,nh (4.12d) 

3 , ~ c2/2eOp + ~/p/2; 
0,.p=~tan ( v + - ~ p / 2  J (4.12e) 

3 1  C2/2 p + 
0:= tan [/  rr+-Fp-  J (4.12f) 

The contributions to C,(t) from ring operators where the first and/or last 
collisions are weak collisions can again be shown to lead only to oscillating 
LTT. Finally, we remark that, as discussed for Co(t), one can consistently 
neglect the oscillating LTT in Eqs. (4.12). We will come back to this point 
in the following section. 

5. D I S C U S S I O N  

We conclude this paper with a few remarks. 
(1) We have concentrated here on the slow long time decay of 45~, 

given by Eq. (2.12c) and have not yet discussed the long time behavior of 
the solution of the BGL equations, ~ ,  given by Eq. (2.12b). Expanding 
Eq. (2.12b) around the Markovian BGL operator, A~ 0) = A~ z = 0), 
we obtain 

(P(D0)(VI Z) r z - - A ~  0 ) ] -  1/)l.x-~ [ z - A ~ 1 6 5  1 o , = f A s ( v ~ , z ) - A ~  

• [ z - A ~  l v l x + " -  (5.1a) 

The first term in Eq. (5.1) can be easily evaluated and shown to lead to an 
exponentially decaying VACF, 

C~)(t) = (m/~)-1 expC- t/3x/~r r] (5.!b) 
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with 
Z = [O.)p~,p 1og(Epl)] l (5.1C) 

Here ~ is the mean free time between collisions associated with the 
Markovian limit of the BGL operator, Eq. (2.9b). 

The second term in Eq. (5.1a) was analyzed some ago by Guernsey. (~9) 
He showed that it leads to an oscillating long time tail very similar to that 
given in Eq. (1.1). This behavior is very different from that of neutral fluids. 
The presence of a slowly decaying part of the VACF within the BGL 
approximation is a consequence of the long range of the Coulomb poten- 
tial and is unique to the system considered here. Physically, this oscillating 
LTT arises in Eq. (5.1a) due to the collective nature of the Vlasov operator 
contained in A~ z). In fact we showed in I that the BGL operator 
A~(vl, z) is obtained by resumming all ring-like diagrams where all the 
collisions are weak collisions, governed by the interaction operator 0ij. 
Collective effects involving weak collisions are responsible for oscillating 
LTT in the velocity correlation functions. We argue, however, that the 
"true" asymptotic behavior of such velocity correlations should be iden- 
tified with the purely decaying t 3/2 tail and is therefore entirely analogous 
to that of neutral fluids. The oscillating LTT should be considered as 
decaying faster than t-3/2 in the following sense. In an actual "experiment" 
one analyzes the behavior of the VACF by looking at its time average or 
its integral over an observation time T, with T>>(Op 1. The time average of 
the oscillating tail, Eq. (1.1), is then found to decay one power faster than 
the average of the t-3/2 tail. 

(2) Once more we want to emphasize that the only ring operator 
that leads to a purely decaying LTT is ABvT, i.e., one where both the first 
and last collisions are strong collisions, that can correlate the velocities of 
the particles. Furthermore, the intermediate hydrodynamic propagators in 
ABT-r are obtained by resumming all the ring collisions where all the 
collisions of the sequence are strong. The ring operator ABTT contains then 
precisely the same physical effects as the ring operator for hard sphere 
fluids. 

In Refs. 1 and 2 a formal kinetic theory was used to obtain the ring 
operator responsible for the long time tails. In both cases the intermediate 
propagator was correctly identified as hydrodynamic propagators, built of 
sequences of strong collisions among the particles, but the initial and final 
collisions of each ring were assumed to be weak. The corresponding ring 
operator contains the same physical information as our ABoo, even though 
it differs from it in the detailed form of the vertices. Gould and Mazenko (~) 
only obtained an oscillating long time tail for the VACF, as given by 
Eq. (1.1). 
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From a weak-collision ring operator Baus and Wallenborn (21 have 
obtained at t-3/2 contribution to the shear current autocorrelation function 
arising from the coupling of two plasma modes. This seems in contradic- 
tion with the conclusion we reached above that this type of ring operator 
does not lead to a purely algebraic long time tail of O(t 3/2). We believe 
that they have not properly taken into account all the static correlations 
which are needed to consistently evaluate the weak-collision ring operator. 
Furthermore, we show elsewhere (1~ that the full shear current 
autocorrelation function (kinetic and potential parts) that was considered 
by Baus and Wallenborn does not have a t-3/2 tail arising from the coupl- 
ing of two plasma modes. 

(3) We remark that among the hydrodynamic modes of the OCP 
there are finite frequency modes, the plasma modes, for which Im co(q) 
does not vanish as q ~ 0. As a consequence of this the transport coefficients 
in Eq. (4.5a) are finite frequency transport coefficients, which are complex 
quantities and may have a different density and temperature dependence 
from the zero frequency transport coefficients. This point should be kept in 
mind when constructing a phenomenological mode coupling theory for the 
OCP.(10) 

(4) Here we have only considered the long time behavior of the 
velocity correlation functions for the transport coefficients. We have 
developed an ordering scheme that enables us to extract the most impor- 
tant contribution in the limit z ~ 0 and k ~ 0, where k is the wave number 
in the macroscopic hydrodynamic equations. In time language, this 
corresponds to the purely decaying ~ t 3/2 long time tails. These tails can 
also be shown to lead to nonanalyticities in the small-k expansion of the 
hydrodynamic dispersion relations, in analogy to the neutral fluid case. (~s) 
The oscillating LTT do not contribute to the leading long time decay of the 
correlation functions, as discussed, nor do they lead to nonanalyticities in 
the dispersion relations for z ~ 0 and k -~ 0. 

The dispersion relations for the plasma modes contain, however, finite 
frequency transport coefficients, evaluated at the plasma frequency, cop. It 
would be of interest to evaluate the leading contribution to the Laplace 
transform of the Green Kubo integrands for z ~ icop and k ~ 0. To do this, 
ones needs to reexamine our theory and develop a new ordering scheme. 
We expect that the oscillating long time tails will give the most important 
contribution to the frequency-dependent transport coefficients in the region 
co = iz~cop. Furthermore, the oscillating tails will lead to nonanalyticities 
in the expansion of these transport coefficients for co ~ _+cop, resulting in 
nonanalytic corrections in the dispersion relations of the plasma modes. 

(5) All ring operators A B ~ ,  for ~/~=00, 0T, T0, TT, lead to 
oscillating long time tails, regardless of whether the first and last collisions 

822/41/3-4-20 
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are weak or strong. All these oscillating LTT have the same time depen- 
dence, but a different dependence on the plasma parameter, ep. For small ep 
the leading contribution is C~oo(t). Denoting the oscillating tail due to the 
strong collision ring operator by C~)T(t), we have 

DO0\ 11 DTT ~" ) 2 
~p 

and 

1 

8p 

The contribution from the weak-collision ring operator ABoo could then 
give important correction to the nonanalyticities in the dispersion relation 
of the plasma modes discussed in (4) above. 

(6) In this paper, we have only considered the kinetic part of the 
correlation functions that determine the shear viscosity, ~/, and the heat 
conductivity, 2. As discussed in Section 1, the potential parts of the time 
correlation functions for q and 2 have long time tails ~ t  -3/2 whose coef- 
ficients are of the same order in the plasma parameter as the coefficients of 
the LTT of the kinetic part. Therefore, we have not given here the complete 
long time tails of the Green-Kubo integrands for q and 2 to lowest order in 
the plasma parameter. In particular, we have found that two mechanism 
contribute to the t -3/2 long time decay of the kinetic part of the shear 
current autocorrelation functions: the coupling of two shear modes and 
that of two plasma modes of opposite sign. The latter contribution is, 
however, exactly canceled in the full Green-Kubo integrand by a t-3/2 tail 
contained in the potential part of this correlation function. The coupling of 
two plasma modes can then lead only to an oscillating tail in the 
Green-Kubo integrand. In the case of the heat current autocorrelation 
function no such cancellation occurs. There too the potential part contains, 
however, long time tails that are at least as important as those evaluated 
here. The long time behavior of the potential part of the Green-Kubo 
integrands has been evaluated elsewhere using a phenomenological mode 
coupling theory. (1~ 

Computer molecular dynamic experiments can measure the kinetic 
and the potential parts of the time correlation functions separately. The 
results given here for the purely kinetic contribution have therefore intrin- 
sic interest. 
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A P P E N D I X  A 

In this Appendix we prove the properties of the vertices T R and T L s,H s.H 
that are needed in the text of the paper. 

L ~ [  R t AI.  Proof  of  Ts, H -  Ts,H] 

The adjoint (denoted by a dagger) of an operator 0(vl,  v2) is defined 
by 

! dvl A(vI, d(vl, v2) 8(vl, v2) 

=fdvldv2[Ot(vl,v2)A(vl,v2)B(vl,v2)4(Vl)(b(v2) (A1) 

where A and B are arbitrary functions. Here we will only prove that the 
above relationship holds for the first two terms in the density expansion of 
T~H and T~H. To lowest order in the density, the right and left vertices are 
equal and are both given by Eq. (3.3). We then have immediately, 

[ T ~ ) ]  += T ~  ) (A2) 

To first order in the density, T~H is given by 

dq 
, ~ f dv 30q_ ql(Vl, V2) Z --iq'v12 

1 

[ ~ 1 1- --flVq)l[O_q(Vl,V3)+O q(Vl,V3) ] (13) )( Oq(V,, v3) z - iq �9 vl3 

and its adjoint is 

R(1) [TIs, H (Vl, V2' ql '  Z)3 ~" 

dq 1 =f(-~)3fdw30-q(Vl'V3){z_1~t.vl 3 E0 q(V2,u q(V2, u I 

[-0q _ ql(u v2) -~- (~q _ ql(u v2) ] (A4) • 
z - i a .  V12 1 
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The left vertex T~L.H to first order  in the density is given by 

s,H k*l' u q l '  dv 3 0 q(u u 
z - -  iq '  v13 

[- 
1 • ]0  q(u u 

z - iq- v12 l 

3 
( - - ~ V q )  I [-0q ql(Vl, V2) -~- 0q _ ql(Vl, V2) ] 

(AS) 

Inserting the identity 

1 1 1 1 
- F iq- v23 

z - iq '  v13 z - iq" u Z -- iq'  u Z -- iq" u 
(A6) 

into the par t  of T~(~ ) that  contains static corrections and using 

0 q(v2, v3)=  -flVqiq'v23 (A7) 

we can see immediately that  the r ight-hand sides of Eqs. (A4) and (A5) are 
indeed identical. 

R,L A2. Smal l -Frequency Limit of Ts, H and Proof of Eqs. (4.8)  

The objective here is to derive an explicit representat ion for the z, 
q ~ 0 limit of the vertices TR'L's.Ht'I, V2, q, Z). This representat ion will enable 
us to prove Eqs. (4.8). 

We consider the quant i ty  

M ( Z )  = F/2 f du 1 dv 2 A(u u T~RH(u u q, Z) ~(Vl) ~(/)2) F(vl)  (A8) 

for z real and z > O, where A and F are arbi t rary functions, and evaluate 

M(O)= lim M(z) 
z~O + 

=limz~o+ n2 f dvldV2 f (~) 3A(v1,u Oq(u165165 l 

• q6(vl)~(v2) 0_q(Vl, v2) F(vl)  (A9) 

Equat ion  (A9) can be rewritten in a more  explicit form as 

;, f M ( 0 ) =  zlim- o+ n2 Y+'~ 2zci dvt dv2 dv' A(vI '  v2) (-~yTc) 3 0q(V1 ' V2) SDH(q) 

1 1 ~? 
X Z t Uqz,(V2]Vt)O(~)l)~)(1)t)--l~ q ' ~-TV, F(v' ) (A10) 

z -  - i q ' v l  m 
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Here 7 defines a contour in the complex z plane, to the right of all the 
singularities of the integrand and we have required Re (z -  z ' )>  0. We have 
also introduced the Laplace transform of the Green's function of the Vlasov 
equation, given by 

Uq:(v I v') : dt c -zt Uq(u t l v', 0) (Alia) 

for Rez > 0, where the Green's function Uq(v, t iv', 0) is the solution of the 
equation 

I ] ~ +  iq" v -  ~q(v) Uq(u tlv', 0 )=  O(t) g ( v -  v') (Allb) 

The Laplace-transformed Green's function is explicitly given by 

t 
, , _ . 

Uqz(~lv) z + i q ~  m -q q,z) z+iq.v '  

where D(q, z) is the plasma dispersion function defined as 

f 1 1 c? D ( q , z ) = l - n  dVz+iq.v m 

for Rez > 0. 
Inserting Eq. (Allc) into Eq. (A10), we obtain 

(Allc) 

(Alld)  

M(0)= lira0+ n 2 f(=i~ dz'c f dq 0q (u u z~ - ix  ~ / j d v ' d v 2 A ( v l ' v 2 )  (-~u) 3 ' 

1 1 [ 1 0 ~(q, 
• z '  - + -  -7 ' ) ]  

z-- iq 'vl z ' + i q ' v  2 m eq" D(q, z')J 

X r ~m --q "~vl F(vl) (A12) 

where, for Rez' > 0, 

f r (A13) ~(q, z') = n dVz,+iq~ 

The z' integral in Eq. (A12) can be performed by closing the contour to the 
left. Changing q into - q  and using 

D ( - q ,  z + /q-v)  = [D(q, z* - / q -  v)]* (A14) 
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together with a similar identity for ~(q, z), we obtain 

M(0)= z~o+lim rt2 f dvl dV2 A(vl, v2) f (~)3Oq(vl, v2) SDH(q) O(Vl) 

X {~r~(q'v12 ) q~(V2)-- ~ - Vqq "~-~2 r/~(v2) 

x Im z - i q ' v 1 2 ~ , z  iq v , ) / ) m  ~ q" 

The evaluation of the imaginary part in Eq. (A.15) is straightforward, but 
lengthy. The result is 

f f ( 2 ~ )  3 7~SDH(q) _iq.  v,)[ 2 M(0)=~o+lim t/2 dvldV2A(Vl,V2) 0q(Vl,V2)]O(q ' 

x ~b(v,) ~b(v2) {3(q' v12)(1 +flVq) 

X + dv 3 q" V31 q 

.lye2 f }1 , ~v1F(u1 ) (A16) + nfiVqq.v2P dv3 ~(q �9 v31) q~(/)3) - -a  q q m 

Here P denotes the principal part of the integral. From Eq. (A16) we can 
immemdiately identify the q, z --* 0 limit of the right vertex T~H. It is given 
by 

T~o(Vl, V2) = lim lim T~.(vl, v2, q, z) 
z~0* q~O 

=f dq Oq(Vl, V2 ) 7zSD.(q) {~(q . v12)(1 _~. nflVq ) 
]n(q,, ---'~q-v1)l 2 

+ n3Vqq'v2P f a~3 6(q- v31) q~(v3) 
q'v12 

)'( [0 q(Vl, V2)-[-0 q(Vl, V2) ] (A17) 
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Using Eq. (A17) it is easy to see that T~o is indeed the kernel of the 
Markovian "self' BGL operator, i.e., 

- 0  A,(vl, 0) ~b(Vl) F(vl )=n dye TsR, O(u u r r F(u 

q IV(q,-- -u 

x 6(q'vly)O(v~)O(vy)q~F(u (A18) 

where the explicit representation of A~ 0) given in the second equally of 
Eq. (A18) can be derived as indicated in I. The Markoffian operator T~o 
has also the property 

dv 2 TRo(v 1 , u ~b(D 1 ) (~(/)2) [I/]j(u 1 ) "Jr I//j(v2) ] = 0 ( A 1 9 )  

where 0j(v)= 1, v, u 
Making use of the above properties, Eq. (4.8a) is now easily proved. 

Using that for small q, O~(v, q) = 1 + O(q), we obtain 

lim lim %Vlxl I-~~ 0) IT~H(VI, Vy, q, z)lOff(Vl, - q )  R O~ (vy, q))e, 
z ~ 0  + q ~ 0  

= _ n - - l ~ V l x l  R O~,o(V,, q)>~ (A20) 

where we have used that R O~,o(V, q) is a linear combination of the five 
collision invariants 0j(v). 

Finally, the analogous properties for the left vertex T~ H can be proved 
in the same way. 

REFERENCES 

1. H. Gould and G. F. Mazenko, Phys. Rev. A 15:1274 (1977). 
2. M. Baus and J. Wallenborn, J. Stat. Phys. 16:91 (1977). 
3. J. A. Krommes and C. Oberman, J. Plasma Phys. 16:193 (1976). 
4. P. Vieillefosse and J. P. Hansen, Phys. A 12:1106 (1975) and references therein; see also 

M. Baus and J. P. Hansen, Phys. Rep. 59:1-94 (1980). 
5. B. Bernu and J. P. Hansen, Phys. Rev. Lett. 48:1375 (1982). 
6. M. Baus and J. P. Hansen, Phys. Rep. 59:52 (1980). 
7. Y. Pomeau and R. Resibois, Phys. Rep. 19:63 (1975). 
8. M. C. Marchetti, T. R. Kirkpatrick, J. R. Dorfman, and E. G. D. Cohen, J. Stat. Phys. 

41:37 (1985). 
9. T. Gaskell, J. Phys. C 15:1601 (1982). 

10. M. C. Marchetti and T. R. Kirkpatrick, Phys. Rev. A 32 (1985). 



660 Marchetti  and Kirkpatrick 

11. J. R. Dorfman and E. G. D. Cohen, Phys. Rev. A 6:776 (1972); Phys. Rev. A 12:292 (1975). 
12. L. P. Kadanoff and J. Swift, Phys. Rev. 166:89 (1968). 
13. G. E. Uhlenbeck and G. W. Ford, in Studies in Statistical Mechanics/, J. de Boer and G. 

E. Uhlenbeck, eds. (North-Holland, Amsterdam, 1961). 
14. R. Zwanzig, Phys. Rev. 129:486 (1963). 
15. M. H. Ernst, . H. Hauge, and J. M. J. van Leeuwen, Phys. Rev. A 4:2055 (1971). 
16. M. Baus, in Strongly Coupled Plasma, G. Kalman and P. Carini, eds. (Plenum Press, New 

York, 1978), p. 279. 
17. T. R. Kirkpatrick and E. G. D. Cohen, J. Stat. Phys. 33:639 (1983). 
18. M. H. Ernst and J. R. Dorfman, J. Stat. Phys. 12:311 (1975). 
19. R. L. Guernsey, in Lectures in Theoretical Physics-Kinetic Theory, Vol. IXC, W. E. Brittin, 

ed. (Gordon and Breach, New York, 1967), p. 147. 


